Package: pwr4exp 0.1.0.9000
pwr4exp: Power Analysis for Research Experiments
Provides tools for calculating statistical power and determining sample size for a variety of experimental designs used in agricultural and biological research, including completely randomized, block, and split-plot designs. Supports customized designs and allows specification of main effects, interactions, and contrasts for accurate power analysis.
Authors:
pwr4exp_0.1.0.9000.tar.gz
pwr4exp_0.1.0.9000.zip(r-4.5)pwr4exp_0.1.0.9000.zip(r-4.4)pwr4exp_0.1.0.9000.zip(r-4.3)
pwr4exp_0.1.0.9000.tgz(r-4.4-any)pwr4exp_0.1.0.9000.tgz(r-4.3-any)
pwr4exp_0.1.0.9000.tar.gz(r-4.5-noble)pwr4exp_0.1.0.9000.tar.gz(r-4.4-noble)
pwr4exp_0.1.0.9000.tgz(r-4.4-emscripten)pwr4exp_0.1.0.9000.tgz(r-4.3-emscripten)
pwr4exp.pdf |pwr4exp.html✨
pwr4exp/json (API)
NEWS
# Install 'pwr4exp' in R: |
install.packages('pwr4exp', repos = c('https://an-ethz.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/an-ethz/pwr4exp/issues
- milk - An exemplary dataset of a 4x4 crossover design with 2 squares
Last updated 1 months agofrom:87fb13524d. Checks:OK: 7. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 11 2024 |
R-4.5-win | OK | Nov 11 2024 |
R-4.5-linux | OK | Nov 11 2024 |
R-4.4-win | OK | Nov 11 2024 |
R-4.4-mac | OK | Nov 11 2024 |
R-4.3-win | OK | Nov 11 2024 |
R-4.3-mac | OK | Nov 11 2024 |
Exports:designCODdesignCRDdesignCustomdesignLSDdesignRCBDdesignSPDfind_sample_sizepwr.anovapwr.contrast
Dependencies:abindbackportsbootbroomcarcarDataclicolorspacecowplotcpp11DerivdoBydplyremmeansestimabilityfansifarverFormulagenericsggplot2gluegtableisobandlabelinglatticelifecyclelme4lmerTestmagrittrMASSMatrixMatrixModelsmgcvmicrobenchmarkminqamodelrmunsellmvtnormnlmenloptrnnetnumDerivpbkrtestpillarpkgconfigpurrrquantregR6RColorBrewerRcppRcppEigenrlangscalesSparseMstringistringrsurvivaltibbletidyrtidyselectutf8vctrsviridisLitewithr
Readme and manuals
Help Manual
Help page | Topics |
---|---|
Calculate variance covariance parameters | calc.theta |
Extend lmerModLmerTest class | customLmerMod-class |
Creation of Experimental Designs | design.COD design.CRD design.Custom design.LSD design.RCBD design.SPD designCOD designCRD designCustom designLSD designRCBD designSPD |
Create a data frame for Crossover design | df.cod |
Create a data frame of completely randomized design | df.crd |
Create a data frame for Latin square design | df.lsd |
Create a data frame of randomized complete block design | df.rcbd |
Create data frame for split-plot design | df.spd |
Determine the sample size required to achieve the target power | find_sample_size |
Create an artificial model object | fit.pseu.model |
An exemplary dataset of a 4x4 crossover design with 2 squares | milk |
Power of omnibus test | pwr.anova |
Power of contrasts | pwr.contrast |
Naming theta Naming the vector in the order of model specification and in the actual order used in the model | theta.names |